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Abstract. This article reports a sudden chaotic attractor change in a system described by a conservative
and dissipative map concatenation. When the driving parameter passes a critical value, the chaotic attractor
suddenly loses stability and turns into a transient chaotic web. The iterations spend super-long random
jumps in the web, finally falling into several special escaping holes. Once in the holes, they are attracted
monotonically to several periodic points. Following Grebogi, Ott, and Yorke, we address such a chaotic
attractor change as a crisis. We numerically demonstrate that phase space areas occupied by the web and
its complementary set (a fat fractal forbidden net) become the periodic points’ “riddled-like” attraction
basins. The basin areas are dominated by weaker dissipation called “quasi-dissipation”. Small areas, serving
as special escape holes, are dominated by classical dissipation and bound by the forbidden region, but only
in each periodic point’s vicinity. Thus the crisis shows an escape from a riddled-like attraction basin.
This feature influences the approximation of the scaling behavior of the crisis’s averaged lifetime, which
is analytically and numerically determined as 〈τ 〉 ∝ (b − b0)

γ , where b0 denotes the control parameter’s
critical threshold, and γ � −1.5.

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

“Crisis”, a common manifestation, means sudden chaotic
attractor change. Usually the change mechanism is an “es-
caping hole’s” sudden appearance inside a chaotic attrac-
tor when a control parameter reaches a threshold value.
As the control parameter progresses, the hole gradually
grows (from zero measure), so that the motion in the at-
tractor escapes faster. Grebogi, Ott, and Yorke deduced
the universal scaling law as

〈τ〉 ∝ |p − pc|−γ , (1)

where 〈τ〉 denoted the average iteration lifetime in the
original chaotic attractor, p was the system’s control pa-
rameter, and pc the control parameter’s threshold [1–3].
Grebogi, Ott, and Yorke indicated that in an everywhere
smooth dissipative two-dimensional mapping system, the
chaotic attractor usually was the unstable manifold clo-
sure of a saddle node located in its basin boundary. The
stable manifold closure of the same saddle (in a homoclinic
case) or another saddle (in a heteroclinic case) formed the
chaotic attractor’s basin boundary. When the control pa-
rameter passed a threshold, the unstable manifold crossed
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the stable manifold. Consequently, the small region sur-
rounded by the crossing manifolds formed the escaping
hole [1–3].

A dissipative system is characterized by continued con-
traction of phase space volume with increasing time. The
well-known reasons for dissipation are friction, heat ex-
change, etc. Due to these reasons, the trajectories from
initial conditions in phase space are attracted monoton-
ically to fixed points, single periodic orbits, or chaotic
attractors with lower dimensionality than the original
phase space. These attractors often show zero measure
in a two-dimensional mapping system. This induces an
exponential contraction of phase space volume, a process
occurring ad infinitum. However, Wang et al. suggested
putting notation on a type of dissipation called “quasi-
dissipation” [4,5]. This happens in an irreversible system,
in which a phase point might have more than one inverse
image, so that some phase space volume elements might
“merge to one” in a dynamic process and induce the phase
space collapse. The quasi-dissipative mechanism usually
leads to a linear collapse of phase space volume. In corre-
spondence, this caused initial values in a phase space area
to iterate into elliptical islands with finite measure after a
finite period [4–8]. Therefore, quasi-dissipation was always
weak relative to well-known classical dissipation. That is
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why the influence of quasi-dissipation on dynamics usu-
ally could not be observed. Only (as Wang et al. did) in
a system described by a discontinuous and noninvertible
concatenation of two conservative maps was the study of
dynamic characteristics induced by quasi-dissipative prop-
erties possible, because strong classic dissipation no longer
appeared [4–8].

Wang et al. studied crises caused by quasi-dissipative
properties and discovered that the crises happened when
(one or several) elliptic island(s) suddenly appeared in
a chaotic attractor [6–8]. Iterations on the attractor es-
caped more quickly to the elliptical island when it grew.
Jiang et al. studied the lifetime scaling law of the crises in
quasi-dissipative systems analytically, and indicated gen-
erally that the quasi-dissipative properties did not af-
fect the value of the scaling exponent. Therefore, when
estimating, only the “escaping-hole growing rule” and
“visiting probability varying rule” [7] were considered. As
reported in [6–8], in quasi-dissipative systems, which usu-
ally were discontinuous and noninvertible concatenations
of two conservative maps, the chaotic attractor always was
the image set of the discontinuous borderline in the sys-
temic function’s definitional domain. In agreement with
the analytic conclusion of Mira in certain kinds of two-
dimensional piecewise continuous noninvertible maps (like
the system discussed here), the chaotic area was bounded
by image segments of the discontinuous borderlines [9].

For an initial condition near a basin boundary, uncer-
tainty in predicting the final attractor can arise because of
the finite precision in the initial condition’s specification.
It may be possible to improve predictability by making
the initial condition more precise. If the basin boundary is
simple, e.g., a one-dimensional curve in a two-dimensional
phase space, increasing the precision will result in an equal
amount of improvement in the predictability of the attrac-
tor. It has been recognized, however, that in nonlinear dy-
namical systems significant difficulty can arise in the pre-
diction of the final destination. In particular, fractal basin
boundaries [10–12] can arise for which improvement in
the precision to specify the initial condition often results
in disproportionately less improvement in predictability.
Dynamical systems, especially those possessing a simple
symmetry, can have riddled basins [13,14], for which vast
increase in the precision of the initial condition results in
practically no improvement in predictability. Predictabil-
ity is usually characterized by examining how error proba-
bility in the prediction, f(ε), scales with the precision ε in
the initial condition. Typically, f(ε) ∼ εα where 0 ≤ α ≤ 1
is the uncertainty exponent [10]. The value of α determines
the degree of improvement in predictability (i.e., decrease
in f(ε)) upon reduction in ε. For fractal basin boundaries,
the typical values of α are between zero and unity, while
for riddled basins, α ≈ 0.

Recently, Lai et al. presented a class of non-
symmetrical physical systems that exhibited such an ex-
treme degree of unpredictability in attractors. The sys-
tem was piecewise smooth Hamiltonian (some example
systems were suggested in Refs. [4–8]). Lai et al. discov-
ered that, in the case where multiple attractors coexisted,

the attraction basins arisen in such quasi-dissipative sys-
tems were mixed in such a way that, for every initial
condition that approached one attractor, there were ini-
tial conditions arbitrarily nearby that approached other
attractors [15]. The mechanism for the unpredictability
was found to be different from riddling. It was due to
mixing different attraction basins on a fat-fractal set,
which was addressed as the “forbidden region net” in ref-
erences [15,16]. The forbidden region net contained at-
traction basins of all attractors in the system and the
basin boundaries merely divided the fat-fractal sets on
all scales. The basins generated by this mechanism were
called “riddled-like basins” in reference [15].

This article discusses a system described by a discon-
tinuous and noninvertible concatenation of a conserva-
tive and classical dissipative map (addressed as a “semi-
dissipative system”). The mechanism (presented by Lai
et al. in Ref. [15]) for generating riddled-like basins and to-
tal attractor unpredictability can still be observed in this
system. The riddled-like basins are dominated by quasi-
dissipation and occupy most of the areas in phase space.
However, there are small areas dominated by classical dis-
sipation and bound by the forbidden region, but only in
each periodic point’s vicinity. This can suddenly induce
a change of a chaotic attractor into a transient chaotic
web, which can be defined as a characteristic crisis (af-
ter Grebogi, Ott, and Yorke [1–3]). After the crisis, the
iterations on the transient chaotic web (i.e. in the riddled-
like basin) escape to certain periodic points. In the sec-
ond section the system is introduced. In section three the
forbidden region is discussed and the affects of classical
dissipative or quasi-dissipative properties are explained,
respectively. In the fourth section, the characteristic crisis
and lifetime scaling law are reported. In the last section,
the text is summarized.

2 The semi-dissipative system

The kinds of systems in the current study can be gener-
ically described as follows: The system’s phase space is
divided into two distinct but complementary regions (R1

and R2). Such regions are the domains of map functions
g1 and g2, respectively. The functional forms of g1 and g2

are different, therefore the system’s dynamics suffer from
“jumping” when iterations cross the smooth “discontinu-
ous borderlines” (which divide R1 and R2). Additionally,
the map composed of g1 and g2 shows irreversibility, so
that one phase point may have two pre-images. One of the
maps, g1 or g2, is conservative and the other classically dis-
sipative. As introduced in last section, the systems should
show quasi-dissipation and classical dissipation simultane-
ously. Also, the discontinuous borderlines’ forward image
set forms a stochastic web where iterations display chaotic
motion. The questions are (1) if it is possible to distin-
guish the different affects of these two types of dissipa-
tion on system’s dynamics, and (2), if the aforementioned
riddled-like attraction basin, induced by coexistence of at-
tractors and the appearance of a fat fractal forbidden net,
can still appear. The positive answers to these questions
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should lead to interesting dynamic characteristics in such
systems.

Such systems basic characteristics should be indepen-
dent from the details of the mapping functions. Therefore,
to answer the questions, a sample system, whose func-
tion can be analytically deduced with a model electronic
relaxation oscillator (explained in the appendix) can be
studied. It is emphasized that the model can be realized
with high precision using modern electronic units, and the
model is only one of many possible physical backgrounds
for the deduction of similar maps. The maps read:

⎧
⎨

⎩

xn+1 = g1x = xn + yn+1 + (a/b),
yn+1 = g1y = yn − (1/b) sin(2πxn),

[mod. 1] (xn �∈ F ),
(2)

⎧
⎪⎨

⎪⎩

xn+1 = g2x = xn + α
2π ln

1 + cd

1 − ad − bdyn
,

yn+1 = g2y = yn + 2xn,
[mod. 1] (xn ∈ F ),

(3)

where x and y are variables, F = [xF1, xF2] = [0.5 +
arcsin(c)/(2π), 1 − arcsin(c)/(2π)] (i.e. the definition re-
gion of mapping function g2), a, b, c, d, α are constants.
They satisfy a > 1, b > 0, 0 < c < 1, α > 0, 0 < d < 1,
respectively. (a, b, c, d are dimensionless and the unit of α
is rad).The physical implications of the variables and the
constants are explained in appendix.

The Jacobian matrix of maps (2) and (3) are J1 and
J2, respectively:

J1 =
∂(xn+1, yn+1)

∂(xn, yn)
=

⎡

⎢
⎣

1 − 2π

b
cos(2πxn) 1

−2π

b
cos(2πxn) 1

⎤

⎥
⎦ (4)

J2 =
∂(xn+1, yn+1)

∂(xn, yn)
=

⎡

⎣ 1
abd

2π(1 − ad − bdyn)
2 1

⎤

⎦ . (5)

The value of the determinant of J1 is a unit; therefore
map (2) is conservative. The value of the determinant of J2

is less than 1 (within the range of parameters chosen in the
current study), therefore map (3) is a classical dissipative
map.

The inverse maps of (2) and (3) are:
{

xn = g−1
1x = xn+1 − yn+1 − a

b ,

yn = g−1
1y = yn+1 +

1
b

sin(2πxn),
(xn �∈ F ), (6)

⎧
⎪⎨

⎪⎩

xn = g−1
2x = (yn+1 − yn)/2,

yn = g−1
2y = yn+1 − 2xn+1 +

α

π
ln

1 + cd

1 − ad − bdyn
,

(xn ∈ F ).

(7)

Note that choosing an inverse image is determined by xn

instead of xn+1, therefore each point may have two inverse
images, respectively, by (6) or (7). As a result, the concate-
nation of maps (2) and (3) is irreversible. This induces the
quasi-dissipative properties mentioned in the last section.
The system is described by a discontinuous and noninvert-
ible concatenation of a conservative and classical dissipa-
tive map (a semi-dissipative system).

Fig. 1. The fb1 region. Parameter values are α = 1, a = 2.0,
b = 1.27, c = 0.8, d = 0.09.

The system’s periodic orbits are important to the cri-
sis in the fourth section. The periodic orbits of map (2)
have been already discussed in reference [4]. The conclu-
sion that map (3) does not have period-1 orbit can be
analytically obtained, but the deduction is trivial and will
not be presented. The important periodic orbits are the
ones which cross the border, for example, of the period-2
orbit (x1, y1), (x2, y2), satisfying the following relations:

{
x2 = g1x(x1, y1)
y2 = g1y(x1, y1)

{
x1 = g2x(x2, y2)
y1 = g2y(x2, y2)

. (8)

However, it is difficult to analytically deduce their explicit
functions. The crisis discussed in the fourth section con-
cerns a period-4 and period-8 orbit. Both cross the border.
It is easy to list their implicit expressions similar to (8),
but they can be only discussed further by a numerical
method (as can be seen in fourth section).

3 The forbidden network

This system is described by a concatenation of a conser-
vative map (2) and a classical dissipative map (3). The
definition domains of conservative map g1 and classical
dissipative map g2 are D = {(x, y)|0≤x≤xF1 “or” xF2≤x≤1}
and F = {(x, y)|x∈[xF1,xF2]}, respectively. The forbidden
region of map (2), fb1, is defined as the region where every
point’s backward image g−1

1 (P ) P ∈ fb1 falls in the defi-
nition range of map (3), i.e. g−1

1 (P ) ∈ F , and thus it does
not exist. Similarly, the main part of map (3)’s forbidden
region (to be explained in the following paragraph), f1

b2, is
defined as the region where every point’s backward image
g−1
2 (P ) P ∈ f1

b2 falls in the definition range of map (2),
i.e. g−1

2 (P ) ∈ D, and thus it does not exist.
From inverse map (6) the boundary equation of fb1 as

xn+1−a/b+m−xF2 ≤ yn+1 ≤ xn+1−a/b+m−xF1 can
be obtained, where m is an integer denoting the operation
of modulo arithmetic. Figure 1 shows fb1 region.

Obtaining an explicit expression of region f1
b2 is diffi-

cult due to the implicit function form of inverse map (7).
It can only be determined by numerical method. The dark
gray areas in Figure 2 show region f1

b2. The light gray ar-
eas in Figure 2 show the forward image set of the area F
denoted by M = {(x, y)|g−1

2 (x,y)∈F}. After the two gray
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Fig. 2. The fb2 region (the dark gray areas and white pin-
stripes). Parameter values are α = 1, a = 2.0, b = 1.27, c = 0.8,
d = 0.09.

areas are removed, in Figure 2 there are surplus parts de-
noted by three white, narrow, strap-shaped areas. They
show the collapsed part of the phase plane induced by
the classical dissipation of map g2, which can be denoted
by f2

b2 = I − g2(I) (I denotes the whole phase plane
{(x, y)|x∈[0,1],y∈[0,1]}). Obviously, because the iteration of
the whole phase plane by g2 falls out of f2

b2, f2
b2 is also

a part of map (3)’s forbidden region, fb2, which means
fb2 = f1

b2 ∪ f2
b2.

The system’s forbidden region, where the iterations
starting from any other place in the phase plane cannot
enter, is defined as fb = fb1∩fb2. The forward images of fb

seem also to be the forbidden region, however, some points
there may have two backward images. One of them belongs
to the forbidden region; the other is outside of it. Therefore
the real forbidden region should be the forward image set
of fb, excluding the points which have two backward im-
ages. It can be expressed as Fr =

⋃∞
j=1[g

j(fb)\Q], where Q
denotes the set of points which have two backward images.
Obviously, Fr should be a fat fractal network [15,16]. The
boundaries of the forbidden network, Fr, should be the
forward images of the discontinuous borderlines [15,16].
The forbidden network and the stochastic web formed by
the forward image set of the discontinuous borderlines are
complementary on phase space [15,16]. Trajectories initi-
ated from the forbidden net must exit immediately and,
once exiting, can no longer return to the set. The next sec-
tion shows that the forbidden network plays an important
role on the crisis discussed in the section.

The gray areas in Figure 3 show forbidden region fb,
where the narrow stripe-shaped part denoted by B′ shows
the forbidden area induced by classical dissipative prop-
erties. The numerical calculation indicates that the area
of B′ just equals the area of collapse caused by the iter-
ation of area F , by g2. The next section introduces B′’s
important role in a characteristic crisis.

4 The crisis

A crisis is observed in the current system where classical
dissipation and quasi-dissipation coexist. However, as it
is possible to distinguish their different affects, the crisis
shows special features. In the current study, the parame-
ters in maps (2) and (3) are chosen as a = 2.0, c = 0.8,

Fig. 3. The phase plane when α = 1, a = 2.0, b = 1.27, c = 0.8,
d = 0.09. It was drawn by selecting evenly 10×10 initial values
in area x ∈ [0, 1], y ∈ [0, 1], performing 100000 iterations, and
recording the last 1000. The nodal points 1, 2, 3, 4 denote
a period-4 orbit. The nodal points A, B, C, D, E, F, G, H
denote a period-8 orbit. The dark shadowed areas show the
forbidden region. B′ indicates the forbidden area induced by
strong-dissipative properties.

d = 0.09, and α = 1 (rad), and b is chosen as the control
parameter.

When the control parameter decreases and reaches
b = 1.400, a period-4 point attractor, which crosses the
border, appears and coexists with elliptic islands. This
means a new phenomenon that is coexistent with ellip-
tic islands and point attractors (periodic orbits) emerges.
When the control parameter decreases further and reaches
b = 1.356, all the elliptic islands disappear nearly simulta-
neously due to collision with the discontinuous borderline.
When the control parameter decreases further and reaches
b = 1.278, a period-8 point attractor, which also crosses
the border, appears and coexists with the period-4 point
orbit as shown in Figure 3. When b = b0 = 1.2691, the
“key attracting point” (denoted by “2” in Figure 3, lo-
cated at xg = 0.81948, yg = 0.55597) collides with the
boundary of the forbidden area B′. The period-8 point
attractor disappears at almost the same time due to the
same reason. A chaotic attractor then dominates the phase
plane.

When the control parameter increases from b0 =
1.2691, the chaotic attractor suddenly loses stability and
turns into a transient chaotic web as shown in Figure 4a
(at b = 1.2707) by black points (it resembles the chaotic
attractor existing at b < b0 = 1.2691 very well and is the
image set of the discontinuous borderline as discussed in
the first and third sections. The black points are drawn
when b = 1.2707, by evenly selecting 10× 10 initial values
and then recording 1000 iterations from each value after
ignoring the first 1000). All the iterations on the transient
chaotic web approach period-4 and period-8 point attrac-
tors. The chaotic attractor’s sudden change is defined as
a crisis [1–3].

The dark gray (green online) areas in Figure 4a (at
b = 1.2707) show the forbidden region stated in the last
section. The small brighter gray (dark yellow online) areas
show the first image. The remaining part of the forbid-
den fat fractal network, Fr, is shown by the white areas.
The small black spots denote the transient chaotic web
as stated in last paragraph. The two black (blue online)
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Fig. 4. (Color online) (a) The phase plane at b = 1.2707; (b)
magnification of the (red online) rectangular region shown in
(a); (c) the attraction basins of period-4 and -8 point attractors
at b = 1.2707; (d) magnification of the area E in (c).

vertical lines denote the discontinuous borderlines. The
small black (red online) rectangular area is magnified (as
shown in Fig. 4b (at b = 1.2707)), where a triangular area
is shown by dark gray (green on line) and lighter gray col-
ors separated by three black (red online) lines. The thin
black solid lines starting from initial points A or B, respec-
tively, show that all the iterations starting from a point
inside the triangle never leave the area, and approach the
key period-4 point located at the center.

Figure 4c shows the numerical results about the at-
traction basins of the two periodic (period-4 and -8) at-

Fig. 5. The numeri-
cally obtained f(ε) − ε
relation, b = 1.2707.

tractors. The gray areas show the initial values attracted
to the period-8 point attractor, while the white areas show
the initial values attracted to the period-4 point attrac-
tor (they are drawn by selecting evenly 1000 × 1000 ini-
tial values in x ∈ [0, 1], y ∈ [0, 1], then showing an initial
value in white if the iterations from it reach |x − xg| ≤
0.000001, |y−yg| ≤ 0.000001 inside 500000 iterations. The
criterion for approaching period-8 is similar and will not
be repeated). This figure shows that the basins are riddled-
like. The riddled-like attraction basin was believed to be a
common feature of systems described by a discontinuous
and noninvertible concatenation of two conservative maps
due to the fact that the fat fractal forbidden network con-
tains attraction basins of all attractors in the system, and
the basin boundaries merely divide the fat-fractal sets on
all scales [15]. The example shows that the phenomenon
also appears in systems described by a discontinuous and
noninvertible concatenation of a conservative and a classi-
cal dissipative map. This conclusion is reasonable because
the fat fractal forbidden network still appears in the cur-
rent system as discussed in the last section.

As described in the first section, the error probability
in the prediction of the final attractor for an initial con-
dition, f(ε), scales with the precision ε in the initial con-
dition. One typically has f(ε) ∼ εα where the uncertainty
exponent α ≈ 0 for riddled-like basins [10,15]. To ver-
ify if this conclusion is common also in systems described
by a discontinuous and noninvertible concatenation of a
conservative and a classical dissipative map (as reported
here), the variation relation of f(ε)−ε has been computed
in the following way. We selected evenly 400 initial values
in x ∈ [0.2, 0.4], y ∈ [0.2, 0.4], and also 400 initial values
as (x + ε, y + ε), then computed the proportion, by which
the initial values (x, y) and (x + ε, y + ε) approach dif-
ferent point attractors (the period-4 or period-8 orbit),
as an approximation of f(ε). The results showing the ob-
tained f(ε) − ε relation are presented in Figure 5, which
shows that f(ε) basically does not change when ε varies
and passes 6 magnitudes. This denotes that the prediction
is totally impossible.

Comparing Figures 4a and 4c, one sees that riddled-
like basins of the period-4 and period-8 orbits occupy
almost all the phase space where the fat fractal forbid-
den net and transient stochastic web appear. The nu-
merical computation shows proofs for the fact that quasi-
dissipation dominates this phase region where iterations
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jump randomly and cannot approach a point attractor
monotonically. However, Figure 4c also shows extant some
small phase space areas with smooth boundaries around
each periodic point, where only classical dissipation dom-
inates. The areas around the four period-4 points are
shown by four black spots in the figure. The area around
the key periodic point, (xg, yg), is indicated by “E” and is
magnified. Figure 4d shows the magnification where the
approximate triangular area is clearly shown, identical to
Figure 4b, indicating that the triangular area shown by
dark gray (green online) and gray colors in Figure 4b is
the smooth boundary attraction basin of the key period-4
point. The crisis is signified by an escape from the quasi-
dissipation dominated, riddled-like basin, which occupies
almost all the phase space, to the small areas dominated
by classical dissipation in the vicinity of periodic points.

However, the area shown by dark gray (green online)
and gray colors in Figure 4b is not yet the escaping hole,
∆, of the crisis. ∆ must be confined by the forbidden re-
gion or its images, since no iterations from other areas
can enter these regions. The black (red online) curve at
the bottom-right of Figure 4b shows the upper borderline
of the forbidden region induced by classical dissipation,
B′. The other two black (red online) curves at the top-
left or top-right in Figure 4b show the borderlines of the
fourth or eighth image of the forbidden region induced
by strong dissipation, B′. Therefore only the gray area
confined by these three black (red online) curves is the
escaping hole, ∆. The numerical result confirms that the
fourth and eighth images of the forbidden region induced
by classical dissipation, B′, move far away as the control
parameter b increases, so that the escaping hole ∆ be-
comes increasingly larger, and the average lifetime of the
iterations on the transient chaotic web becomes increas-
ingly shorter. Such an escaping hole, which is produced
by a small area dominated by classical dissipation inside
a very large, riddled-like attraction basin, and also con-
fined by border images of the forbidden region induced by
classical dissipation, has never been reported. This is the
significant feature of the crisis.

It is now clear that a fat fractal forbidden network ex-
ists after the crisis occurs. Trajectories initiated from the
network must exit, and once exiting, they can no longer re-
turn to the set. Once trajectories leave, they wander (for a
very long time) in the transient chaotic web formed by the
images of discontinuous borderlines. Since the forbidden
region network is a fat-fractal set, points in the network
go to different attractors, period-4 orbits, or period-8 or-
bits, no matter how close the points are. This gives rise
to the riddled-like structure observed in numerical exper-
iments. All these phenomena are connected with quasi-
dissipative property (the numerical results show that only
quasi-dissipation plays a role in the riddled-like attraction
basin area); the only expressions of classical dissipation are
the escaping holes. In such circumstances, as reference [7]
points out, the value of the scaling exponent in the life-
time scaling law, (1), can only be estimated by considering
the rule of escaping hole growth and the varying rule of

Fig. 6. The variation
rule of distance d.

Fig. 7. The variation
rule of distance d′.

visiting probability to unit area of escaping hole, i.e.

〈τ〉 ∝ 1
ρ∆

, (9)

where ∆ denotes the measure (area) of the aforementioned
escaping hole, and ρ denotes visiting probability to unit
area of the escaping hole. Due to interest only in the value
of the scaling exponent, the escaping hole is considered an
approximate triangle. The variation rule of its area can be
approximated by the multiplication of d and d′, which are
distances from the key periodic point to the top-left and
bottom-right black (red online) borderlines, as denoted by
two black (blue online) linear lines in Figure 4b. Numeri-
cally, the variation rules of d and d′ are obtained when the
control parameter b changes (as shown by Figs. 6 and 7):

d ∝ (b − b0)0.76±0.02, (10)
d′ ∝ (b − b0)0.75±0.02, (11)

which show a variation rule of the escaping hole mea-
sure as:

∆ ∝ (b − b0)0.75+0.76. (12)

The numerical investigation also confirms that ρ is a con-
stant, independent from control parameter b; therefore, at
once the scaling law of the crisis is estimated as:

〈τ〉 ∝ 1
ρ∆

∝ (b − b0)γ , (13)

where γ � −1.51.
Figure 8 shows the scaling behavior of the average life-

time computed totally in a numerical way. The average
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Fig. 8. The scaling behavior of the average lifetime, 〈τ 〉, in
transient chaos. It is computed by evenly selecting 100 × 100
initial values. The variation range of the control parameter
b is between 1.2692 and 1.2707. When b = 1.2708, a new
period-7 attractor appears, so that the scaling behavior sud-
denly changes. That is why this variation range is chosen.

lifetime, 〈τ〉, is defined as:

〈τ〉 = lim
n→∞

∑n
i=1 Ni

n
, (14)

where n denotes the number of initial values, and Ni de-
notes the iteration lifetime starting from the initial value i.
From the excellent linear fitting on the double-logarithmic
plane shown in Figure 8, it is definite that the lifetime
scaling in the crisis follows

〈τ〉 ∝ (b − b0)γ , (15)

where γ = −1.48± 0.01. This is in strong agreement with
the above mentioned analysis.

5 Conclusion

A system described by a discontinuous and noninvertible
concatenation of a conservative and classical dissipative
map is presented. There coexist quasi-dissipation, which
expresses its affection widely, and classical dissipation,
which shows affection on the system’s dynamics only in
some phase space regions. This kind of system may dis-
play special dynamic phenomena, such as the crisis pre-
sented. The most significant feature of the crisis lies in
its escaping hole, which is formed by several very small
attraction basins with regular boundaries, dominated by
classical dissipation, of the periodic points. Most places
on the phase plane are occupied by riddled-like attraction
basins of different periodic orbits, which give rise to mo-
tion in a transient chaotic network formed by image sets
of the discontinuous borderline in the system’s definition
domain.

This investigation pointed out that the significant dy-
namic features observed only in the systems described
by discontinuous and noninvertible concatenations of two
conservative maps also belong to systems described by
discontinuous and noninvertible concatenations of conser-
vative and classical dissipative maps. The features include

Fig. 9. Schematic of the
relaxation oscillator with
over-voltage protection and
a dissipative unit.

Fig. 10. The relaxation oscillation.

the stochastic web formed by forward images of the dis-
continuous borderlines, the quasi-dissipation property, the
riddled-like attraction basin of coexisting attractors, and
the fat fractal forbidden network. However, the systems
described by discontinuous and noninvertible concatena-
tions of conservative and classical dissipative maps show
unique behavior, which the systems described by discon-
tinuous and noninvertible concatenations of two conser-
vative maps cannot show. For example, the classical dis-
sipation and quasi-dissipation show their different and
distinguishable effects on the crisis presented here.
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sponding author of this paper wants to express his gratitude
to Prof. K. Chen for providing advanced research facilities and
valuable financial support from grant R-151-000-032-112.

Appendix: The deduction of map (2) and (3)

The sample system in the current study is similar to the
model discussed by Wang et al. in literature [4]. Figure 9
shows its schematic, in which I1 and I2 are current sources,
K1, K2, and K3 are controllable electronic switches, and
I1 � I2. When K1 switches on and K2 switches off, I1

charges the capacitance C extremely fast as Figure 10
shows. When voltage Uc, across the capacitance, rises to
an upper threshold value modulated by a sinusoidal signal,
and is not larger than a constant E, K1 switches off and
K2 switches on. In this case K3 connects I2, which makes
capacitance C discharge slowly through current source I2.
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If Uc is larger than the constant E, K3 connects resis-
tance R when Uc is just larger than constant E, which
makes capacitance C discharge slowly through resistance
R. In any case, when Uc falls to a lower threshold value,
K1 switches on and K2 switches off, then capacitance C
turns into the charging state from the discharging state.
The lower threshold is modulated by the phase of upper
threshold at which the last Uc suddenly falls. The phase
point is denoted by a variable x. The modulation function
is described by another variable y, which will be explained
later. In this way, the circuit oscillates continuously.

Figure 10 shows the relaxation oscillation of Uc and
the variation of upper and lower thresholds. As the figure
shows, the upper threshold can be expressed as

{
Un = Umax + U0 sin(2πxn),
Un = Umax + cU0,

when (xn �∈ F ),
(xn ∈ F ),

(16)
where Un denotes upper threshold value when the capaci-
tance suddenly turns from charging to discharging at nth
time, xn denotes the sinusoidal modulation signal phase of
upper threshold at the time, Umax and U0 are constants,
F = [xF1, xF2] = [0.5 + arcsin(c)/(2π), 1− arcsin(c)/(2π)]
(i.e. the definition region where voltage protection is im-
plemented, which makes Uc suddenly begin falling from
constant E), and parameter c satisfies 0 < c < 1. At
the same time, as Figure 10 shows, the lower threshold is
modulated by phase xn with the relation:

Umin(yn) = Umax − aU0 − bynU0, (17)
{

yn+1 = yn − (1/b) sin(2πxn),
yn+1 = yn + (4π)/(bU0),

when (xn �∈ F ),
(xn ∈ F ),

(18)
where parameters a and b satisfy a > 1 and b > 0, re-
spectively. Figure 10 illustrates that the lower threshold
is confined between Umax − aU0 and Umax − aU0 − bU0,
and yn ∈ [0, 1]. When yn = 0, Umin = Umax − aU0; when
yn = 1, Umin = Umax − aU0 − bU0.

The following relation is obtained:

C[Uc(xn) − Umin(yn)] = I2
2π(xn+1 − xn)

ω
, (19)

where ω is the modulation signal frequency of the upper
threshold. When xn �∈ F , it is assumed that Cω/I2 = 1,
bU0/2π = 1 (the units of both quantities are rad/V, V,
respectively), and map (2) can be obtained.

When xn ∈ F , the capacitance discharges though
the resistance R. From dQ = CdUc one can obtain
−dt = [(RC)/Uc]dUc. Integrating the equation for the
discharge process tn → tn+1, one reaches −(tn+1 −
tn) = RC[lnUc(tn+1) − ln Uc(tn)]. Putting Uc(tn+1) =
Umin(yn) = Umax − aU0 − bynU0, Uc(tn) = Uup

n =
Umax + cU0 into the above equation, and noting that
tn+1 − tn = 2π(xn+1 − xn)/ω, one gets

xn+1 − xn =
RCω

2π
ln

Umax + cU0

Umax − aU0 − bynU0
.

Let RCω = α (the unit of α is rad), one gets

xn+1 − xn =
α

2π
ln

Umax + cU0

Umax − aU0 − bynU0
.

Let d = U0/Umax, and one reaches

xn+1 = xn +
α

2π
ln

1 + cd

1 − ad − bdyn
.

Consider yn+1 = yn + (4π/bU0)xn and note bU0/2π = 1,
equation (3) is obtained.
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